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 MOAB

– Overview: mesh & simulation

– 2-slide overview

– Data model

– Basic mesh access

– Sets & tags

– Parallel mesh access

– iMeshP

 CGM/Lasso

– CGM 1-slide overview

– Lasso 1-slide overview

 Usage: MOAB-native tools

 Usage: mbpart / Zoltan

 Usage: mbcoupler
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Introduction

Continuous domain
(geometry)

Discrete domain
(mesh)

FEA

 PDE-based simulation discretizes PDEs over a discrete representation of the spatial 
and often time domain, and solves for specific discrete model(s)

 Sometimes geometric details of the spatial domain are important, sometimes not

– MPP-enabled resolution should resolve geometric features  (where possible & useful?)

 Depending on the geometric features & resolution requirements, generating the 
mesh can be either trivial or not

 Mesh, and data on the mesh, are involved in simulation at the front (generation), 
middle (simulation), and back (viz & data analysis)
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Mesh-Oriented datABase (MOAB)

 Library for representing, manipulating structured, unstructured mesh models

 Supported mesh types:

– FE zoo (vertices, edges, tri, quad, tet, pyramid, wedge, knife, hex)

– Polygons/polyhedra

– Structured mesh

 Implemented in C++, but uses array-based storage model

– Efficient in both memory and, for set-based access, in time

 Mesh I/O from/to various formats

– HDF5 (custom), vtk, CCMIO (Star CD/CCM+), Abaqus, CGM, Exodus

 Main parts:

– Core representation

– Tool classes (skinner, kdtree, OBBtree, ParallelComm, …)

– Tools (mbsize, mbconvert, mbzoltan, mbcoupler, …)

 Parallel model supports typical element-based decompositions, with typical mesh-based 
functions (shared interface, ghost exchange, ownership queries)

 Runs on 32k+ cores
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Parallel Mesh Model

 Definitions:

– Element-based partition: 
decomposition of mesh over processors such that 
each element assigned to exactly one proc/part, 
with vertices shared between parts

– Shared entity: an entity represented on 
multiple procs

– (Part) interface entity: entity shared by multiple parts 
(vertices, edges, faces in a 3D mesh & element-based partition)

– Owned entity, owner: each mesh entity owned by exactly one proc

– Ghost entity: shared non-owned entity (sometimes referred to as “halo”)

 “Degree” of parallel-ness depends on application requirements, and can be adjusted as 
needed during calculation

– Duplicated model on every proc

– Domain-decomposed

– Shared vertices, non-vertices

– 1 or more layer of ghost elements
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MOAB Parallel Mesh Model

 Parallel model based on element-based partition

– Each element assigned to exactly one part, with entities optionally shared between parts/procs

– Arbitrary number of layers of ghost elements

 Supported parallel mesh constructs:

– For each shared entity, every sharing proc knows all other sharing procs & handles on those

– Sharing data stored as either single int/handle (shared with 1 other proc) or mult sharing 
procs/handles

– Ghost/owned status also stored

– Stored in 1-byte ‘pstatus’ bitmask tag

 Parallel model usually initialized by loading from some decomposition in file

– Can be any subset structure that’s a “covering” (each entity in exactly 1 subset)

– Material set, geometric volume, or Zoltan-generated partitioning

 Single-file parallel read/write using parallel HDF5

 All parallel functionality usually accessed through ParallelComm class
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MOAB Data Model

 4 basic types of data:

– Entities (FE zoo, polygons, polyhedra)

– Sets (collections of entities & sets, parent/child links)

– Tags (annotation of data on other 3)

– Interface (OOP, owns data)

 Tags used for both fine-grained and coarse-grained data

– Fine grained: vertex-based temperature

– Coarse-grained: provenance of mesh

 Sets + tags used for a variety of mesh groupings
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MOAB Entity Storage

EntityHandle:
• Fundamental unit of 

access in MOAB
Bitmask of type, id

4-bit 28-or 60-bit

type id

Dense tag 3

Dense tag 2

Dense tag 1

Connectivity

Dense tag 4

Dense tag 2

Coords

EntitySequence:
 Represent used portions of handle space
 Have pointer to SequenceData
 Have start and end handle values
 Arranged in binary tree by start handle

Typically one 
EntitySequence for an 
entire SequenceData

SequenceData:
 Represent allocated portions of handle space
 Have start and end handle
 Coordinates or Connectivity, + Dense Tag Data

Linked list of all SequenceDatas
for a single entity type

Cache most 
recently 
accessed 
EntitySequence

Range:
• Class for storing lists of handles
• Near constant-size for near-contiguous 

subranges of handles
• Methods for efficient Booleans on lists

…

Start1, end1

Start2, end2



MOAB Mechanics (I)

 MOAB implemented in C++, but internally uses array-based storage

– More memory efficient for simulation, with functionality appropriate for all uses

 Data accessed through a MOAB instance

– Multiple instances can co-exist, but single instance is not thread-safe

– Parallel instances independent except through parallel mesh constructs mentioned earlier

 MOAB supports a variety of platforms

– Linux, MacOS, IBM BG/x, Cray

– Windows maybe coming soon

 MOAB configure/build process using autoconf OR cmake

– Makefile “snippets” built to simplify using it in application makefiles (examples later)

– Can build with no dependencies, but you should probably build with NetCDF and HDF5

– For the purposes of this training course, MOAB already built on Vesta

– You can also build a local copy on your machine, and in many cases it’s easier to learn that way

http://trac.mcs.anl.gov/projects/ITAPS/MOAB/wiki
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HelloMOAB: Basic Mesh Access
http://www.mcs.anl.gov/~fathom/moab-docs/html/HelloMOAB_8cpp-example.html

 Interface instantiation using moab::Core constructor

– Normally, all MOAB access should be through moab:: namespace, not used here for brevity

 Mesh can be loaded from file (Interface::load_file) or created in-place 
(Interface::create_vertex, Interface::create_element)

– MOAB source comes with various mesh files, in MeshFiles/unittest/…

 Lists usually handed through interface as either Range or std::vector<EntityHandle>
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GetEntities: Basic Mesh Access
http://www.mcs.anl.gov/~fathom/moab-docs/html/GetEntities_8cpp-example.html

 MOAB provides functions for getting handle type, id (type_from_handle, 
id_from_handle)

– These are bitmask functions, you could implement your own in C/C++

– EntityType enumeration: MBVERTEX, MBEDGE, … (use Doxygen to find definition)

– Ids usually assigned in sequence, starting with 1 (note, 0 is never a valid id, except for handle 0, 
which refers to the “root set” or instance)

 Range provides API very similar to std::vector

– begin(), end(), rbegin(), etc.

– Range::range_inserter type for handing to std::copy

 moab::CN class for Canonical Numbering

– Tells how vertices, edges, faces are numbered in local element

– Provides functions for e.g. getting string name, getting # edges in an element, etc.
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Intermediate-Dimension Entities (“aentities”)

 Explicit representation of edges and edges/faces in 2D, 3D meshes is optional

– Sometimes useful (e.g. adaptive refinement), sometimes not

– For tetrahedral meshes, can increase memory cost by ~4-6x, hex meshes slightly lower

 “Real” meshes usually come with aentities necessary for defining boundary condition 
groupings, but no other ones

 In MOAB:

– You can request creation of aentities by requesting them from adjacency calls with 
“create_if_missing” argument = true

– Calling get_entities_by_xxx will return only those explicitly represented

 To force creation of interior edges/faces for whole mesh:

– Get all vertices using get_entities_by_dimension with dim = 0 (use Range version)

– Call get_adjacencies with to_dimension = 1 or 2 and create_if_missing = true
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MOAB get_adjacencies Allows Booleans on Results List

 get_adjacencies(from=v1-v4; to_dim=2; op=INTERSECT;to_list=<empty>) = q1

 get_adjacencies(from=v3; to_dim=2; op=UNION;to_list=<empty>) = q1, q2

 get_adjacencies(from=v3-v4; to_dim=2; op=INTERSECT; to_list=<q2,q3>) = q2

 Useful for reducing lines of code for mesh query & list manipulation

 Interface::Range also defines Boolean operations, for both code reduction and time 
efficiency
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Sets & Tags
 The combination of sets and tags is one of the most

powerful abstractions in MOAB

– I have yet to see a construct useful in mesh-based simulation that 
cannot be efficiently represented using sets and tags

 Tags are useful as both fine-grained (dense) and coarse-grained (sparse) data

– Sparse tags in MOAB are stored as (handle, value) tuples

– Dense tags are allocated/stored as (value1, value2, …) for sequences of entity handles

– Pointer to tag memory can be retrieved through API, useful for unstructured array-based 
simulations

 A set can have parent and child sets, and this is different from contains relations

– Can define general directed graphs of sets

 Some more about sets:

– The whole mesh is specified through the MOAB API as set handle zero (0)

– Eliminates a whole set of functions for accessing entities for whole mesh vs. subset

– MOAB has 2 types of sets:

• List: order is preserved, entities can appear > 1 time (like std::vector)

• Set: order not preserved (ordered by EntityHandle), each handle can occur only once (like std::set)

– By default, MOAB does not make entities as being in sets, so can have “stale” sets

• Can specify “tracking” flag for set at creation time, treats inclusion as entity-set adjacency

• Tracking efficient memory-wise, but not necessarily time-wise; better to adjust on whole-set basis
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Sets & Tags (cont)

 MOAB API does not bind specific set purposes

– No specific API support for boundary conditions, parallel parts, etc.

 MOAB defines conventions for conventional uses of sets

– MBTagConventions.h, MBParallelConventions.h define various tag names, properties

– MATERIAL_SET, DIRICHLET_SET, NEUMANN_SET, NAME, PARALLEL_PARTITION, …

 Sets & tags useful for defining “metadata” (data about the data)

– MOAB documentation includes “I/O and Metadata Storage Conventions” document that 
describes some common uses

• http://www.mcs.anl.gov/~fathom/moab-docs/html/md-contents.html

• This document describes where data from specific file readers gets put in the MOAB data model

 For some meshes (cubit), sets can be used to represent original geometric model 
topology

– Not enough time to describe here; check metadata document for details
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SetsNTags: Working with Sets and Tags
http://www.mcs.anl.gov/~fathom/moab-docs/html/SetsNTags_8cpp-example.html

 Interface::tag_get_handle used for both accessing current tags and creating new ones

 2 types of tag-based access:

– Get entities by type, tag: most useful for sparse tags

– Get tag values on specific entity(ies): most useful for dense tags

 For materials and boundary conditions, more memory-efficient to define grouping using 
sets, and material/BC data using tags on set

 Most modern meshing tools work this way too
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MOAB Parallel Mesh

 Recall:

– Element-based partition: 
decomposition of mesh over processors such that 
each element assigned to exactly one proc/part, 
with vertices shared between parts

– Shared entity: an entity represented on 
multiple procs

– (Part) interface entity: entity shared by multiple parts 
(vertices, edges, faces in a 3D mesh & element-based partition)

– Owned entity, owner: each mesh entity owned by exactly one proc

– Ghost entity: shared non-owned entity (sometimes referred to as “halo”)

 For lots of parallel mesh usage, don’t need to think about parallel at all

– Serial mesh API works the same way

 In MOAB, parallel mesh constructs are stored using sets and tags

– Could access most of the parallel mesh data using same serial API + parallel tag conventions

 MOAB also has a ParallelComm class

– Provides convenience functions for e.g. getting shared entities, ghost entities

– Parallel functionality, e.g. resolving shared and ghost entities, exchange/reduce tags
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MOAB Parallel Mesh (cont)

 Most common way of initializing parallel mesh is by reading a file, but details are 
important

– Specifying partition type (replicated, by material, geometric volume, partitioning tool)

– Post-read operations (resolve shared entities, exchange ghost cells)

 Specified in MOAB using file options string

– See User’s Guide, section 5, for list of options and common usages

 MOAB implements parallel I/O using single file approach

– Different from many other tools, which use 1FPP or other approaches

– Scalability / workflow simplicity often at odds

 File format also important

– MOAB uses HDF5 for native format, that file type used to store partitioned file
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MOAB Parallel I/O

 Data taken on Intrepid (IBM BG/P)

 Read/write for 32m hex, 64m tet elems

– Nowhere near ideal I/O bandwidth

– Absolute time tolerable in most cases

– Drastic tet time improvement after 
reordering by partition

• Fewer small fragments of HDF5 datasets

 Read/resolve/ghost times

– Read times about constant

– Resolve, ghost time scaling close to linear
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HelloParMOAB: Parallel Mesh Initilization/Access
http://www.mcs.anl.gov/~fathom/moab-docs/html/HelloParMOAB_8cpp-example.html

 Can initialize MOAB using MPI_COMM_WORLD or other communicator

– Can also use multiple ParallelComm objects, on different communicators (but sharing may not work right 

currently…)

 Use ParallelComm::get_shared_entities to get shared entities by dimension and other 
sharing proc (with defaults for all dimensions/other procs)

 PSTATUS_xxx enumeration/bitmask defines various parallel-relevant states

– PSTATUS_ SHARED, MULTISHARED, INTERFACE, GHOST

 Use ParallelComm::filter_pstatus to filter range based on status & Boolean (NOT/AND)

 Resolving shared, ghosted entities can be specified at file read time (using option) or as 
explicit operation through ParallelComm

 MOAB does not restrict or change the way you can use MPI for other things

– i.e. does not define e.g. MOAB_MPI_Comm datatype or MOAB_MPI_Reduce function
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Putting It Together: Parallel Lloyd Relaxation
http://www.mcs.anl.gov/~fathom/moab-docs/html/LloydRelaxation_8cpp-example.html
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it += 1
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Putting It Together: Parallel Lloyd Relaxation (cont)
http://www.mcs.anl.gov/~fathom/moab-docs/html/LloydRelaxation_8cpp-example.html

 Initialization of mesh with shared entities resolved, one layer of ghosts exchanged

 Use centroid tag for intermediate storage of new vertex positions

 CN class cpp variables to dimension some lists

 When getting/setting tag values on multiple entities, make use of &stdvec[0] to get 
pointer to memory

– STL guarantees this is valid

– stl::vector dynamically-sized, useful for mesh-based codes

 Judicious choice of default value for tag eliminates need to initialize fixed tag for unfixed 
vertices

 Results:
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iMesh, iMeshP Interfaces

 The ITAPS project defined a set of 
common interfaces (APIs) for
mesh, geometry, and relations

 C-based interface, but designed to be callable directly from Fortran and C++

– Good portability, performance

– Maintenance easier

– iMeshP for parallel data, constructs

– Python also supported, through PyTAPS

 MOAB uses iMesh, iMeshP to support
Fortran-based applications

 Primary differences between MOAB, iMesh(P):

– MOAB parallel model defined entirely through sets+tags; iMeshP uses “Partition”, “Part”

– In iMeshP, when you have multiple Parts per process, ghosting across parts implies duplicate 
entities in same iMeshP instance

– List handling through iMesh/iMeshP somewhat more cumbersome due to lack of 
Range, std::vector data structures

• Mitigated a bit using ISO_C_BINDING for F90+

 Not enough time to describe fully here; see MOAB User’s Guide, section 7 
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Mesh-Based Tools Packaged With MOAB

 Several tools are packaged with MOAB and built by default

 mbsize

– Used to read mesh & list numbers of entities of various types

-ll option (list long): lists everything in mesh; -g and –m list geometry and material/BC sets, resp.

-f option: lists formats read and written by MOAB

 mbconvert: use to convert between file formats

– Multiple –O <read_option> -o <write_option> can be used to test reading/writing in parallel

– Use to generate vtk files for use by VisIt/ParaView

 mbpart (in mbzoltan subdirectory): partition a mesh for parallel access

– (requires Zoltan library from Sandia)

– Implements various partitioners (use –h to list), but Recursive Intertial Bisection seems to be 
most reliable & relatively fast

 mbtagprop: convert tags between set- and entity-based ata

 mbskin: generate & save the skin of a mesh
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Advanced Topics

 Direct access to MOAB storage

– Use to obtain direct pointers to: tags (sparse & dense), connectivity, coordinates, adjacencies

– Allows near-native speed for array-based applications

– Uses iterator approach to allow for multiple “chunks” in handle/array space

– See examples DirectAccessNoHoles, DirectAccessWithHoles, DirectAccessNoHolesF90 for usage

 Mesh searching

– MOAB implements various tree types that enable local/parallel mesh searching

– Optionally with finite element shape functions for locating points in elements

– See AdaptiveKDTree class, tools/mbcoupler in source
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MOAB-Based Solution Transfer

 Each physics type on independent mesh

 Distributed independently

 Both meshes in same MOAB instance

p1

p3

p2

p4

OR

7M Hexes

28M Tets

Works for 2D, 3D in parallel for interpolation-based transfer 
(+ global or subset conservation)

Work on tracer transport will provide basis for element-based 
conservation too

MOAB currently being integrated into 
ESMF to support online weight 
regeneration too

p1 p2

p3 p4

p6p5

p8p7
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Common Geometry Module (CGM)

 Library for query & modification of BREP CAD-based geometric models

 Supports various modeling engines

– Open.CASCADE (open-source)

– ACIS (commercial)

– CUBIT-ACIS (available for research purposes)

 Designed to represent geometric models as they are represented in CUBIT

 Basic model import & query

– ACIS .sat, OCC .brep, STEP, IGES

– Query # vertices/edges/faces/volumes, edge/face closest pt, face normal, etc.

 Model construction

– 3D/2D primitives, spline fitting, etc.

– Booleans, transforms, sweeping, lofting, etc.

– Not a parametric modeler like e.g. SolidWorks

 Advanced features

– Facet-based modeling

– “Virtual” topology (small feature removal)

– Decomposition for (hex) meshing
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Common Geometry Module (CGM)

Open.CASCADE (OCC) port

 Previously, CGM only supported commercial modeling engines

– ACIS, SolidWorks, Pro/Engineer, Catia CAA

 Over the past couple years, implemented CGM port to Open.CASCADE, the only 
general-purpose, open-source geometric modeling engine

 Most CGM functionality supported

– Geometry construction, booleans, transforms

– Webcut, imprinting (useful for hex & multi-material meshing)

– Virtual topology

– …

 Not supported:

– Regularize after unite

– Some history and undo operations recently added to CGM

– Somewhat slower than ACIS-based CGM
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Lasso Relations Tool

 For some applications, need to relate mesh to geometry

– Adaptive mesh refinement

– Smooth surface-based boundary conditions

 Separation of geometry, mesh in independent components means we need a 
higher-level component that depends on those

 Lasso: tool for recovering, querying, setting geometry-mesh relations

 Prerequisite for querying: restore geometry, mesh with enough information to 
recover matching

 Lasso matches:

– iGeom: Entity dimension – iMesh: EntitySet GEOM_DIMENSION tag value, and

– iGeom: Entity GLOBAL_ID tag value – iMesh: EntitySet GLOBAL_ID tag value

 These matching criteria inherently implementation-dependent, though eventually 
can hopefully specify generically in terms of ITAPS data model

 Current implementation works with meshes generated by CUBIT, MeshKit



Summary

 Mesh tends to be involved in front-end, back-end, of simulation process, and everywhere 
in between

 Mesh-related things tend to be ideal mix between math, CS, computational science (IMO)

 MOAB & friends are easy to use, powerful tools for working with mesh-related data

 For more information:

– International Meshing Roundtable series of conferences, http://www.imr.sandia.gov

– S. Cheng, T. Dey, J. Shewchuk, “Delaunay Mesh Generation”, Chapman & Hall/CRC Press, 2012

– H. Edelsbrunner, “Geometry and Topology for Mesh Generation”, Cambridge Univ. Press, 2006

– http://trac.mcs.anl.gov/projects/ITAPS/wiki/MOAB

– http://collab.mcs.anl.gov/display/moab

– tautges@mcs.anl.gov

 MANY jobs and research topics available in this area!
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